Kurshandbuch
Fakten zur Weiterbildung

Weiterbildung: Einzelmodullehrgang aus Bachelor Data Science (Quellstudiengang: 1110120c)

Kursart: Online-Vorlesung

Dauer: Vollzeit: 6 Monate / Teilzeit: 12 Monate

Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.

Niveau: Die Weiterbildung ist auf dem inhaltlichen Niveau eines Bachelor Studiengangs.
Eine Weiterbildung auf Bachelor-Niveau vermittelt grundlegende Kenntnisse und Fähigkeiten in einem bestimmten Fachbereich.
Zugangsempfehlungen: Englisch auf B2 Niveau
Kurs: DLBDSIPWP01
Introduction to Programming with Python
Kursbeschreibung
This course provides students with a foundational understanding of the Python programming language. Following an introductory exposition to the importance of Python for data science-related programming tasks, students will be acquainted with fundamental programming concepts like variables, data types, and statements. Building on this basis, the important notion of a function is explained and errors, exception handling, and logging are explicated. The course concludes with an overview of the most widely-used library packages for data science.
Kursinhalte
  1. Introduction
    1. Why Python?
    2. Obtaining and installing Python
    3. The Python interpreter , IPython, and Jupyter
  2. Variables and Data Types
    1. Variables and value assignment
    2. Numbers
    3. Strings
    4. Collections
    5. Files
  3. Statements
    1. Assignment, expressions, and print
    2. Conditional statements
    3. Loops
    4. Iterators and comprehensions
  4. Functions
    1. Function declaration
    2. Scope
    3. Arguments
  5. Errors and Exceptions
    1. Errors
    2. Exception handling
    3. Logs
  6. Modules and Packages
    1. Usage
    2. Namespaces
    3. Documentation
    4. Popular data science packages
Fakten zum Modul

Modul: Introduction to Programming with Python (DLBDSIPWP)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Klausur, 90 Minuten
Kurse im Modul:
  • DLBDSIPWP01 (Introduction to Programming with Python)
Kurs: DLBDSOOFPP01
Project: Object Oriented and Functional Programming with Python
Kursbeschreibung
Students will build upon their foundational knowledge of Python programming, by exploring advanced Python programming concepts. To this end, important notions of object-oriented programming like classes and objects and pertaining design principles are outlined. Starting from an in-depth discussion of advanced features of Python functions, functional programming concepts and their implementation in Python are conveyed.
Kursinhalte
  • Students are being provided with a thorough introduction to important notions and concepts from the domain of object-oriented programming such as classes, objects, abstraction, encapsulation, inheritance, polymorphism, composition, and delegation. Additionally, the functional programming paradigm and pertaining ideas like functions as first class objects, decorators, pure functions, immutability and higher order functions are conveyed. Pursuant to the portfolio course type, the aforementioned concepts and ideas are explored by hands-on programming projects.
Fakten zum Modul

Modul: Object Oriented and Functional Programming with Python (DLBDSOOFPP)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Portfolio
Kurse im Modul:
  • DLBDSOOFPP01 (Project: Object Oriented and Functional Programming with Python)
Kurs: DLBCSDMDS01
Database Modeling and Database Systems
Kursbeschreibung

Stored data form the basis of many value chains of an information and knowledge society. The methodical structuring of data through data schemas therefore forms an important basis for storing information in such a way that it can be retrieved and processed quickly and easily. In addition to the structured storage of data, structured access to large amounts of data must also be possible.

This course teaches students how to store data in relational data models and how to access stored data with SQL. In addition to relational database systems, modern DB systems (NoSQL) for storing and accessing data will be presented.

Kursinhalte
  1. Fundamentals of Relational Databases
    1. Basic Concepts of the Relational Data Model
    2. Find and Delete Records in the Database
    3. SQL and Relational Database Systems
  2. Querying Data from a Single Table
    1. Query Data (SELECT)
    2. Query Data With Condition (WHERE)
    3. Sort Query Output (ORDER BY)
    4. Queries With Group Formation (GROUP BY)
    5. Subqueries With Nested SELECT Statements
  3. Conception and Modeling of Relational Databases
    1. The Entity Relationship Model
    2. Relationships and Cardinalities in E/R Models
    3. Normal Forms of Databases
  4. Creation of Relational Databases
    1. Logical Database Design Activities
    2. Mapping of the Conceptual Data Model into the Physical Data Model
    3. Generation of Tables in SQL Databases from E/R Diagrams
  5. Complex Database Queries on Multiple Tables
    1. Composite Quantities (JOIN)
    2. Set Operations
    3. Data Views With CREATE VIEW
  6. Manipulating Records in Databases
    1. Insert New Data Records (INSERT)
    2. Change Existing Records
    3. Transactions
  7. NoSQL Database Systems
    1. Motivation and Basic Idea
    2. Selected Groups of NoSQL Systems

Fakten zum Modul

Modul: Database Modeling and Database Systems (DLBCSDMDS)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Klausur, 90 Minuten
Kurse im Modul:
  • DLBCSDMDS01 (Database Modeling and Database Systems)
Kurs: DLBDSPBDM01
Build a Data Mart in SQL
Kursbeschreibung
This course provides the opportunity to implement a realistic database use case scenario. A list of use case ideas is provided on the online learning platform. In addition, the students can contribute use case ideas of their own in accord with the tutor. The core aim is to apply the hitherto theoretical knowledge of database methods and approaches to solve a real-world application scenario. This entails reasoning about possible design and architectural choices in a rational way, as well as implementing them in a functioning database system.
Kursinhalte
  • In this course, students apply their knowledge of data modeling and databases to implement a project use case of their choosing. All relevant artefacts, like use case evaluation, chosen implementation method, code, and outcomes, are documented in the form of a written project report.
Fakten zum Modul

Modul: Build a Data Mart in SQL (DLBDSPBDM)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Portfolio
Kurse im Modul:
  • DLBDSPBDM01 (Build a Data Mart in SQL)
Kurs: DLBDSDQDW01
Data Quality and Data Wrangling
Kursbeschreibung
The goal of data science can be summarized as the extraction of insights (hence, value) from data. It is self-evident that this objective cannot be successfully achieved based on unreliable and untrustworthy data. This course aims at establishing the notion of data quality and the pertinent methods for data quality management. Furthermore, techniques for acquiring data as well as formatting and tidying data in order to make it suitable for subsequent analytical treatment are covered.
Kursinhalte
  1. Data Quality
    1. Introduction to data quality
    2. Data quality dimensions and issue types
  2. Data Quality Management
    1. Data governance and stewardship
    2. Activities and processes
  3. Data Acquisition
    1. Web scraping
    2. Data APIs
  4. Working with Common Data Formats
    1. Text-based formats (CSV, XML, JSON)
    2. Binary formats (HDF 5, Parquet, Arrow)
  5. Tidy Data
    1. Structuring
    2. Cleansing
    3. Enrichment

Fakten zum Modul

Modul: Data Quality and Data Wrangling (DLBDSDQDW)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Hausarbeit
Kurse im Modul:
  • DLBDSDQDW01 (Data Quality and Data Wrangling)
Kurs: DLBDSEDAV01
Exploratory Data Analysis and Visualization
Kursbeschreibung

Obtaining an overview of the salient characteristics of a data set is one of the core activities at the outset of any data analysis endeavour. The corresponding activities, methods, and techniques are grouped under the term “exploratory data analysis”. During exploratory data analysis, gaining insight into a given data set is often aided by the application of suitable visualization techniques. The utility of visualization, however, does not end at this stage; it is also crucial for communicating analytical outcomes.

This course first introduces a set of approaches, tools, and techniques that are useful for exploring data sets. It then takes a thorough look at the subject area of visualization, which is presented in detail by an exposition arc that spans from first principles of visualization to practical implementation to insights into the communication of data science results and findings.

Kursinhalte
  1. Exploratory Data Analysis
    1. Location and variability
    2. Further exploration of data distribution
    3. Covariance and correlation
  2. Data Visualization Principles
    1. Coordinates and axes
    2. Color spaces
    3. Graph types
  3. Data Visualization Practice
    1. Amounts, proportions, associations, and distributions
    2. Time series and trends
    3. Geo-spatial data
  4. Visualization in Python – Matplotlib and Seaborn
    1. Introduction to PyPlot, Matplotlib, and Seaborn
    2. Basic plots
    3. Geo-spatial plots
  5. Communicating Data Science
    1. Unclutter, focus, and capture attention
    2. Lessons from design
    3. Principles of storytelling with data
Fakten zum Modul

Modul: Explorative Data Analysis and Visualization (DLBDSEDAV)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Hausarbeit
Kurse im Modul:
  • DLBDSEDAV01 (Exploratory Data Analysis and Visualization)

JETZT INFOMATERIAL ANFORDERN

Schön, dass Du Deine Auswahl getroffen hast und mehr über Deine Weiterbildung bei der IU Akademie erfahren willst. Fordere jetzt Dein Infomaterial an: kostenlos und unverbindlich.
Voraussetzung für den Bildungsgutschein: Du kannst einen Bildungsgutschein erhalten, wenn Du arbeitssuchend bist, von Arbeitslosigkeit bedroht bist oder Dich beruflich neu orientieren musst.

Ich habe die Datenschutzerklärung, sowie die Informationen zum Widerrufsrecht und zu den Verantwortlichen zur Kenntnis genommen.

* Pflichtfelder